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ABOUT THE USE OF NUMERICAL, ANALYTICAL
BOUNDARY ELEMENT METHOD

TO CALCULATE ANISOTROPIC PLATE

Mykola Surianinov*, Vitalii Chaban*

Shown an approach to the calculation of anisotropic plates numerically-analytical
boundary elements method. The two-dimensional problem is reduced to one-dimen-
sional by variation method Kantorovich-Vlasov. To select a function of the transverse
distribution of deflections are encouraged to use one of two methods – dynamic or
static. Application of numerical and analytical boundary element method allows
a single approach to obtain the solution of basic differential equation of bending of
anisotropic plate with any boundary conditions and without any restrictions on the
nature of the application of the external load.
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Calculation of structures of anisotropic materials and, in particular, the calculation of
anisotropic plates, coupled with mathematical difficulties, so to obtain an analytical solution
of the differential equation of bending of anisotropic plate is not always possible. An impor-
tant role in this is played by the fixing plate edges and local load. Widely used numerical
methods of analysis, but here, as we know, there is no universal approach. Each numerical
method due to the need to solve a specific range of tasks, and having certain advantages,
is not without flaws, often of a fundamental nature, that determine the boundaries of its
application.

On this ground it is effective to use numerical-analytical boundary elements method (NA
BEM), which was developed relatively recently, but has already proven itself for a solution
wide range applications [1, 2]. This method allowed to receive a fundamental system of
solutions of the differential equation of bending isotropic plates without any restrictions on
the nature of the load and secure conditions [1, 2]. Here we consider the idea of spreading
the method for calculation of bending anisotropic plates.

The differential equation of bending of anisotropic plate (Fig. 1) has the form [3].
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(1)

where D11, D22 – flexural stiffness relative to the axes y and x; D66 – torsional stiffness;
D16, D26 – external stiffness.
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The main governing equation (1) has the fourth order and a differential equation in
partial derivatives. The function that is a solution of this equation depends on two variables
that mean there is a two-dimensional problem. As known [1, 2], a major element in the
sampling system in the numerical-analytical boundary elements method is a one-dimensional
module (for rod systems) or generalized dimensional module (for plates and shells), so the
equation (1) should be transformed. For this we use the variation Kantorovich-Vlasov
method [1].

Fig.1: Anisotropic plate

Lets expand the deflection W (x, y) in a functional series :

W (x, y) = W1(y)X1(x) +W2(y)X2(x) + · · · +Wn(y)Xn(x) . (2)

The dimensionless system Xi(x) function must be selected such that it most accurately
describes the shape of the curved surface of the plate in the direction of the axis ox. Clearly,
this requirement is satisfied by beam deflection curves having the same support conditions
as the plate in the axis ox direction. To select a function of the transverse distribution
of deflections X(x) there are two ways – the static and dynamic [1]. When using a static
deflection of the beam is determined by the method of static load (Fig. 2). This load should
be such that consistently alternated symmetric and skew shape of the curve deflection.
Function Xi(x) presented in the form of power polynomials, which are easy to differentiate,
integrate and calculate without the use of complex programs. When using dynamic beam
deflection method represents a form of its own oscillations (Fig. 3). If a static method is
necessary to build a function Xi(x) depending on the load and the reactions of the beam, the
dynamic method is sufficient to change only the values of the natural frequencies, which is
very convenient. Functions X1(x) (‘1’ index these functions hereinafter omitted) for various
support conditions are shown in Table 1.

We hold in (2) one member of the series, which, as shown in our previous works [1, 2],
provides acceptable for engineering calculations accuracy of the final result :

W (x, y) = W (y)X(x) . (3)

In calculation practice rarely use two or more members of the series (2), limited to the
first approximation.

This is due to the high accuracy of the results, due to slight differences between the
approximate scheme and the real object. Formally, this is expressed in the proper function
X(x) selection. The more accurately it describes a parameter in the direction of the axis ox,
the less error of the result.
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Fig.2: Deflection functions (static) Fig.3: Deflection functions (dynamic)

Scheme of beams Form of natural oscillations
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Tab.1: Functions X1(x) for different options of bearing
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The convergence of the series (2) is due to the fact that the W (x, y) deflection and the
q(x, y) right side (it is also expanded in the orthogonal Xi(x) function system) throughout
the region occupied by the plate satisfy the Dirichlet conditions that mean, have a final
number of discontinuities of the 1st kind and a final number of maxima and minima.

Lets substitute (3) in (1) :

D11X
IVW +4D16X

′′′W ′ +2 (D12 +2D66)X ′′W ′′ +4D26X
′W ′′′ +D22XW IV = q . (4)

Multiply both sides of (4) on X and integrate in [0, l1] within, which – the size of the
plate in the direction of the axis x :
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Then equation (5) gets form :

AW IV +KW ′′′ +BW ′′ + LW ′ + CW = q(y) ,

or
W IV + aW ′′′ + bW ′′ + cW ′ + dW =

1
A
q(y) , (7)

where a = K/A, b = B/A, c = L/A, d = C/A.

Coefficients A, B, C, K, L can be calculated (for known rigidities) in any mathematical
package, for example, in MATLAB.

Characteristic equation that appropriate equation :

t4 + a t3 + b t2 + c t+ d = 0 . (8)

Equation (8) is algebraic equation forth degree, for which exist analytical solution in
radicals for any values of coefficients. There are known solution Descartes-Euler and Ferrari
that were detail described in mathematical literature.

Now consider the internal force factors that arising on flexing of anisotropic plate (Fig. 1).

Expressions that determining these factors are well known [3] :
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Normal and shear tensions (Fig. 4) are connected to the internal power dependencies :
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(14)

Expressions (9)–(13) are not suitable for use in the numerical-analytical method of boun-
dary elements, because they are functions with two variables, and method is considered
one-dimensional modules. We apply to (9)–(13) variation method of Kantorovich-Vlasov.

Fig.4: Normal and shearing stresses in plate

Substituting (2) in each of the expressions (9)–(13) :

Mx = −(D11W X ′′ +D12W
′′X + 2D16W

′X ′) , (15)

My = −(D12W X ′′ +D22W
′′X + 2D26W

′X ′) , (16)

Mxy = −(D16W X ′′ +D26W
′′X + 2D66W

′X ′) , (17)

Qx = −[D11W X ′′′ + 3D16W
′X ′′ + (D12 + 2D66)W ′′X ′ +D26W

′′′X ] , (18)

Qy = −[D16W X ′′′ + (D12 + 2D66)W ′X ′′ + 3D26W
′′X ′ +D22W

′′′X ] . (19)

In formulas (15)–(19) W = W (y), X = X(x).

Supplement (15)–(19) kinematic parameters (rotation angles)

θx = W X ′ ,

θy = W ′X .
(20)
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The plate is regarded as a generalized one-dimensional module, so its state vector is the
same as in the bending beam :

�F =

∣∣∣∣∣∣∣
W (y)
θy(y)
My(y)
Qy(y)

∣∣∣∣∣∣∣ , (21)

where W , θy, My, Qy – deflection, angle of rotation, bending moment and shear force
respectively.

Solution of equation (7) depends on the root of the corresponding characteristic equa-
tion (8), which, as shown by S. G. Lehnitsky [3] can not have real roots

t1−4 = ±α± iβ .

Therefore, the deflection can be written as

W (y) = C1 Φ1 + C2 Φ2 + C3 Φ3 + C4 Φ4 , (22)

where
Φ1 = coshαy sinβy , Φ2 = coshαy cosβy ,

Φ3 = sinhαy cosβy , Φ4 = sinhαy sinβy .
(23)

After determining the constants by solving the Cauchy problem we can determine the
fundamental functions of the problem, to construct the Green’s function, etc. in accordance
with the algorithm of numerical and analytical boundary elements method, which is detail
described in [1, 6].
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