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Abstract. The article is devoted to different approaches of using the Fibonacci numbers
and Lucas numbers. Some string problems were solved. Two important generalizations were
obtained. Also was showed how applying limits and mathematical induction allows to prove
significant corollaries.
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Kuiscokutl nayionanvHutl yHieepcumem mexHoa02it ma Ou3atiiy
3ACTOCYBAHHS PEKYPEHTHHUX NOCJIJOBHOCTEM

Cmamms npuceauena pisHum nioxooam 0o suxopucmanus yucen PiboHauui ma uucen
Jlykaca. bByamu poss’sazami Oesxi 3a0aui npo paOKU ma pO3NAHYMO 08d  BANCIUBUX
y3azanvHenHs. Taxoxc 6Y10 NOKA3AHO AK Meopis 2paHuyb ma MamemMamudHda iHOYKYis
0036015110Mb 00800UMU PI3HI 8ANCIUBT HACTIOKU.

Knrouosi cnosa: pexypenmua nocrioosnicms, uucia Qioonauyi; wucna Jlykaca, 3aoaui
3 pAOKamMU; MAMeMamuyHa iHOYKYis.

Introduction. The Fibonacci sequence and Fibonacci numbers are widely used in
different branches of both mathematical and non-mathematical world. It is not surprising that
the study of this issue continued intensively in the TWENTIETH century [1-2]. This was
facilitated by new problems of combinatorics, informatics, which at that time faced the
intellectual elite of society [2—3]. This topic does not lose its relevance to this day and Fibonacci
numbers remains one of the most exciting sections of mathematics.

Considering the famous rabbit puzzle [1] which Fibonacci published in 1202 we obtain
Fibonacci numbers

1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, ... )
and has become one of the most famous sequences in mathematics.

"Golden spiral”[4] can also be seen in the works of nature. The distance between the
leaves (or branches) on the trunk of the plants are approximately as Fibonacci numbers. Cells
of pineapple create the same spiral sequence, that is 34 spirals in one direction and 55 in another.

Shells, snails’ houses, starfishes, tulips, scales on a spruce cone and especially shellfish
clam formed according to the same scheme, with each increment of a shell adds itself, another
segment according to Fibonacci numbers.

The seeds in the sunflower basket are lined along the spirals, which are twisted both
from left to right and from right to left. Sunflower seeds are placed by spirals in the Fibonacci
sequence. An inflorescence of sunflower with 34 spirals one way and 55 to another.

Lucas sequences are used in probabilistic Lucas pseudoprime tests, which are part of
the commonly used Baillie-PSW test. LUC is a public-key cryptosystem based on Lucas
sequences that implements the analogs of ElGarnal (LUCELG), Diffie-Hellman (LUCDIF),
and RSA(LUCRSA) [5-8].

Description of problems. To solve some string problems. To obtain two important
generalizations of classical Fibonacci numbers. Applying limits and mathematical induction to
prove some corollaries.

Main results. How many ways can one climb a staircase with n steps, taking one or two
steps at a time?
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Solution. Any single climb can be represented by a string of ones and twos which sum
to n. We define a,, as the number of different strings that sum to n. In Table 1, we list the
possible strings for the first five values of n. It appears that the a,,’s from the beginning of the
Fibonacci sequence.

To derive a relationship between a,, and the Fibonacci numbers, consider the set of
strings that sum to n. This set may be divided into two nonoverlapping subsets: those strings
that start with one and those strings that start with two. For the subset of strings that start with
one, the remaining part of the string must sum to n — 1; for the subset of strings that start with
two, the remaining part of the string must sum to n — 2. Therefore, the number of strings that
sum to n is equal to the number of strings that sum to n — 1 plus the number of strings that sum
to n — 2. The number of strings that sum to n — 1 is given by a,,_; and the number of strings
that sum n -2 is given by a,,_,, so that

ap = Qp-1 Tt Ap_>

And from the table we have a;, =1 =F, and a; = 2 = F;, so that a,, = F,,, for all
positive integers n.

Table 1
Strings of ones and twos that add up to n
n |strings ay,
1 |1 1
2 [11,2 2
3 |111,12,21 3
4 11111,112,121, 211, 22 5)
5 [11111,1112,1121,1211, 2111, 122,212, 221 8

1. Consider a string consisting of the first n natural numbers, 123...n. For each number
in the string, allow it to either stay fixed or change places with one of its neighbors. Define a,,
to be the number of different strings that can be formed. Examples for the first four values of n
are shown in Table 2. Prove that a,, = F,,.

Table 2
Strings of natural obtained by allowing a number
to stay fixed or changed places with its neighbor
n strings ay
1 1 1
2 12,21 2
3 123,132, 213 3
4 1234, 1243, 1324, 2134, 2143 5

Solution. Consider the set of different possible strings. This set may be divided into two
nonoverlapping subsets: those strings start with one and those strings for which one and two
are interchanged. For the former, the remaining n — 1 numbers can form a,,_, different strings.
For the latter, the remaining n — 2 numbers may can form a,,_, different strings. The total
number of different strings is therefore given by the Fibonacci recursion relation

An = ap-1 + Aup_,

Together witha; =1 =F, and a; = 2 = F;, we obtaina,, = F,,;.

2. Consider a problem like that above, but now allow the first 1 to change places with
the last n, as if the string lies on a circle. Suppose n > 3, and define b,, as the number of different
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strings that can be formed. Show that b,, = L,,, where L,, is the n-th Lucas number which
satisfied the quality
o =R Ra y

Solution. Again, consider the set of different possible strings. This set may be divided
into two nonoverlapping subsets: those strings for which he one and n are not interchanged, and
those strings for which they are interchanged. For the former, the number of different strings is
given by a,, = F, ;. For the latter, the number of different strings is given by a,,_, = F,,_;.
We therefore have

bp = Fpy1 + Foog

The relation satisfied by b,, is the same as that satisfied by the nth Lucas number, so that
b, = L,.
3. Prove that

1
E, = E(Ln—l + Ln+1)-

Solution. We have
= (Lne1 + Lust) = 2 ((Facz + F) + By + Fay2)) =< (Fucz + 2B, + Fy + Fyy).
Using recursion relation, we obtain
§0@2+yg+&+ﬁkg=§U%Q+3a++%+aﬂ)=&.

Consider two generalizations of Fibonacci numbers.

1. The Fibonacci numbers can be extended to zero and negative indices using tlie
relation E,= F,,, - F,.,. Determine F, and find a general formula for F_,, in terms of F,,.
Prove your result using mathematical induction.

Proof. We calculate the first few terms.

Fp=F,-F, =0,
F,=F -Fy=1,
F,=Fy—F_,=-1,
Fo=F,-F_,=2,
F,=F,-F 5=-3
Fo=F ,—F_,=5,
Fo=F,-F.=-8.

The correct relation appears to be
F—n = (_1)n+1 Fn (2)

We now prove (2) by mathematical induction.

Base case: Our calculation above already shows that (2) is true forn=1and , n =2,
thatis, F_; =F, and F_, = —F,

Induction step: Suppose that (2) is true for positive integers n = k -1 and n = k. Then
using the definition, the induction hypothesis, and the recursion relation we have

F_te+1) = Fogem1y = Foe =(=1D)*Fpey — (=D Fy =
=(=1D)** 2 (Fi—1 + Fi) =(=1D)**?Fi4,
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so that (2) is true for n= k+1. By the principle of induction, therefore (2) is true for all
positive integers.

2. The generalized Fibonacci sequence satisfies f,,;1 = f,, + f—1 With starting values
f1 =pand f, = g. Using mathematical induction, prove that

friz = Fap + Fn+1q- (3)
Proof. Prove (3) by mathematical induction.
Base case: To prove that (3) is true for n=1, we write
Fip +Fog=p+q=f;.
To prove that (3) is true for n = 2, we write
Fop +F3q=p+20=f3+f, = fa.

Induction step: Suppose that (3) is true for positive integers n=k-1 and n=k. Then using
the induction hypothesis and the recursion relation we have

fre+s fiesz ¥ frer = (Frp + Fryrq) + (Fi1p Fig) =
= (Fx Fe—)p + (Fg1 + Fi)d = Feqap + Friag

so that (2) is true for n=k+1. By the principle of induction, therefore (2) is true for all
positive integers.

Consider another approach of using the Fibonacci numbers. The recursion relation for
the Fibonacci numbers is given by

Fpy1 =F + Fy
Diving by F, yields

Fntr _ Fna
Pl 1+ " 4)

We assume that the ratio of two consecutive Fibonacci numbers approaches a limit as
n - co. Define lim 2 = ¢ so that lim % =§. Taking the limit, (4) becomes a = 1 + %

n—-oo n n—-0oo n

the same identity satisfied by the golden ratio. Therefore, if the limit exists, the ratio of two
consecutive Fibonacci numbers must approach the golden ratio for large n, that is,

li Fn+1 _ _ ‘/g +1
nl—r}go F, 2
The ratio of consecutive Fibonacci numbers and this ratio minus the golden ratio is
shown is Table 3. The last column appears to be approaching zero.

Table 3
Ratio of consecutive Fibonacci numbers approaches @
F,_ F,
n nol value nl_
E, Fy
1 % 1.0000 -0.6180
2 % 2.0000 0.3820
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End of table 3

3 ; 1.5000 -0.1180
4 g 1.6667 0.0486
5 g 1.6000 -0.0180
6 g 1.6250 0.0070
7 2 1.6154 -0.0026
13
8 ﬁ 1.6190 0.0010
21
9 ﬁ 1.6176 -0.0004
34
10 @ 1.6782 0.0001
55
Prove some corollaries.
1. Assuming lim % = @, prove that
n—-oo n
F
lim = — g

k—oo Fk
Proof. Write

Frin _ Fkin x Fr4n—1 X X Fr+1

Fp Fien-1  Frkaen—2 Fi

Then taking ’gim, and using

lim —L o,
jooo Fj-1
One obtains directly
lim 2kt = @,
k—>oo Fpg
2. Using @* = @+ 1, prove by mathematical inducting the following linearization of

powers of the golden ratio:

()
Where n is a positive integer and F, = 0.
Proof. We prove (2) by mathematical induction.
Base case: For n = 1, the relation (5) becomes , which is true.
Induction step: Suppose that (5) is true for positive integer n = k. Using induction

hypothesis, @ = @+ 1 and recursion relation we have.

So that (2) is true for n = k + 1. By the principle of induction, (2) is therefore for all

positive integers.

3. Using @2 = —¢ + 1, prove by mathematical induction the following linearization of

powers og the golden ratio conjugate:

()" =—-Fo+F (6)
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Where n is a positive integer and F, = 0.

Proof. We prove (3) by mathematical induction.

Base case: For n = 1, the relation (6) becomes —¢ = —¢, which is true.

Induction step: Suppose that (6) is true for positive integer n = k. Using induction
hypothesis, ¢ = —¢ + 1 and recursion relation, we have

(=)t = —p(—p)* = —p(—Fxp + Fy_1) = Frp? — Fp10 =

=F(—p+1) —F_190=—F + F_1)@ + Fy = —Fiy10 + Fy.

So that (6) is true for n = k + 1. By the principle of induction, (2) is therefore for all
positive integers.

Conclusions. Despite being invented more than 800 years ago Fibonacci numbers
appear relevant and allow to obtain a lot of significant results.
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